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ABSTRACT
The .NET Compact Framework is designed to be a high-
performance virtual machine for mobile and embedded de-
vices that operate on Windows CE (version 4.1 and later).
It achieves fast execution time by compiling methods dy-
namically instead of using interpretation. Once compiled,
these methods are stored in a portion of the heap called
code-cache and can be reused quickly to satisfy future method
calls. While code-cache provides a high-level of reusability,
it can also use a large amount of memory. As a result,
the Compact Framework provides a “code pitching” mech-
anism that can be used to discard the previously compiled
methods as needed.

In this paper, we study the effect of code pitching on the
overall performance and memory utilization of .NET ap-
plications. We conduct our experiments using Microsoft’s
Shared-Source Common Language Infrastructure (SSCLI).
We profile the access behavior of the compiled methods.
We also experiment with various code-cache configurations
to perform pitching. We find that programs can operate
efficiently with a small code-cache without incurring sub-
stantial recompilation and execution overheads.

Keywords: Just-in-time compilation, Java virtual ma-
chines, .NET CLR, code-cache management

1. INTRODUCTION
In both .NET and Java execution systems, Just-In-Time
(JIT) compilers have been used to speed up the execution
time by compiling methods into native code for the un-
derlying hardware [7, 14, 10]. JIT compilation has proved
to be much more efficient than interpretation especially in
execution intensive applications [6, 7, 14, 16]. In the Mi-
crosoft .NET Framework, a method is compiled prior to
its first use. Afterward, the compiled methods are stored
in the code-cache for future reuse [9]. This code-cache is
located in the heap region .

The size of code-cache can be increased or decreased de-
pending on the program’s behavior. For example, in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

.NET Technologies’ 2005 Conference Proceedings
ISBN 80-86943-01-1
Copyright UNION Agency — Science Press, Plzen, Czech Republic

default configuration of the Shared-Source Common Lan-
guage Infrastructure (SSCLI ) or frequently referred to as
Rotor, the initial code-cache size is set to 64 MB. Once
the accumulation of compiled method reaches this size, the
system can choose to either increase the code-cache size
or keep the same size and free all the compiled methods
not currently in scope (referred to as pitching) [10]. There
are two possible overheads of the “code pitching” mecha-
nism [10, 9]— the overhead of traversing through all the
compiled methods and the overhead of recompiling meth-
ods after pitching. However, pitching provides a means
to maintain a small code-cache as memory is periodically
reclaimed.

Currently, code pitching is employed in the .NET Compact
Framework (CF), which is used to develop applications for
smart devices with limited memory resources [9]. Such de-
vices include smart phones, Pocket PC, and embedded sys-
tems running Windows CE. In these devices, a pitching
policy can play a very important role since it can deter-
mine the amount of memory footprint for the code-cache.
If pitching occurs infrequently, the code-cache would oc-
cupy a large amount of memory. If pitching occurs too
frequently, a large number of methods would have to be
recompiled. The goal of this paper is to take a preliminary
step to study the effect of pitching on the overall perfor-
mance and memory utilization of .NET applications. To
date, there have been a few projects that investigate the
recompiling decision and method unloading in Java [16,
15, 3]. However, they are implemented into a virtual ma-
chine that does not support pitching. With the SSCLI, we
have an opportunity to study the mechanism that has been
built by a major software maker as a standard feature. Our
work attempts to study two important research questions.
They are:

RQ1: What are the basic behaviors of the compiled meth-
ods?—We investigate the access behaviors, compila-
tion frequency, and commonly used metrics such as
size and the number of methods.

RQ2: Can we improve the overall performance and mem-
ory utilization by manipulating the code-cache config-
uration?—We experiment with multiple code-cache
sizes and investigate the impacts of utilizing different
cache size enlargement policies.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related background information. Sec-
tion 3 describes our challenges and research questions in
detail. It also describes the methodology and constraints



used to perform the experiments. Section 4 discusses the
experiments and results conducted in regards to the re-
search questions. It also contains the detailed analysis of
our findings. Section 5 presents the future work. Section 7
discusses prior research work in this area. The last section
concludes this paper.

2. BACKGROUND
This section discusses background information related to
this work.

2.1 Shared-Source Common Language Infras-
tructure (SSCLI)

The main objective of the CLI is to allow programmers
to develop component-based applications where the com-
ponents can be constructed using multiple languages (e.g.
C#, C++, Python, etc.). ECMA-3351 (CLI) standard de-
scribes “a language-agnostic runtime engine that is capable
of converting lifeless blobs of metadata into self-assembling,
robust, and type-safe software systems” [10]. There are
several implementations of this standard that include Mi-
crosoft’s Common Language Runtime (CLR), Microsoft’s
Shared Source Common Language Infrastructure (SSCLI),
Microsoft’s .NET Compact Framework, Ximian’s Mono project,
and GNU’s dotnet project. For this research, we use the
SSCLI due to the availability of the source code. More-
over, it seems to be the most mature implementation when
compared to Mono or GNU’s DotNet projects.

SSCLI is a public implementation of ECMA-335 standard.
It is released under Microsoft’s shared source license. The
code base is very similar to the commercial CLR with a few
exceptions. First, the SSCLI does not support ADO.NET
and ASP.NET which are available in the commercial CLR.
ADO.NET is a database connectivity API and ASP.NET
is a web API that is used to create Web services. Second,
the SSCLI uses a different Just-In-Time (JIT ) compiler
from the CLR. The latter provides a more sophisticated
JIT compiler with the ability to pre-compile code. How-
ever, the commercial CLR does not support code pitching.
Notice that both implementations of the CLI adopt JIT
compilation and not interpretation mode as in some earlier
Java Virtual Machine implementations [11]. Third, it is de-
signed to provide maximum portability. Thus, a software
layer called Portable Adaptation Layer (PAL) is used to
provide Win32 API for the SSCLI. Currently, the SSCLI
has been successfully ported to Windows, FreeBSD, and
MacOS-X operating systems.

One of the major runtime components related to this work
is the Just-In-Time (JIT) compiler. It is used to compile
methods within components into the native code for the
underlying hardware [14]. JIT compiler also ensures that
every instruction conforms to the specification by ECMA
standard. Once compiled, these methods reside in the code-
cache which is located in the heap memory. Instead of
recompiling a method each time it is called, the native code
is retrieved from the code-cache [9]. When more memory is
needed by the system or when a long running application
is moved to the background, the methods in the code-cache
are“pitched” to free up memory [9, 10].

2.2 Code Pitching Mechanism
The execution engine initializes the code-cache by allocat-
ing 8KB. The reserve code-cache size is set to the target
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code-cache size which is defined by a variable. By default,
this variable is set at 64MB by the SSCLI designers. As
program execution continues, additional heap space is al-
located to the code-cache in 8KB increments as needed to
store the compiled methods. The total size of the allo-
cated heap space is called the committed code-cache size.
As the committed code-cache size approaches the target
code-cache size, the allocator will decide whether to allo-
cate more heap space beyond the target cache size or pitch
all unused methods. The allocator will not consider code
pitching until the target code-cache size, maximum cache
size or pitch trigger is reached. The default target cache
size is 64 MB whereas the maximum cache size is 2GB.

Once the target code-cache size is reached, the allocator
chooses between increasing the cache size or pitching un-
used code. If the reserved size is less than the target code-
cache size or the existing pitch overhead is over the accept-
able maximum (default 5ms), the allocator will attempt to
increase the code-cache size. During this attempt, if the
total needed memory is greater than the reserved size, less
than the hard limit, not at the pitch trigger point, and
pitch overhead is too high, it will expand the committed
code-cache size and the reserved size. Otherwise, it will
pitch all unused code. If there is still insufficient memory
after pitching, the code-cache size and the reserved size will
be increased until enough memory is available. If at any
point during the execution, the number of compiled meth-
ods reach the pitch trigger, pitching occurs regardless of
other cache conditions.

Currently, code pitching is used in the .NET Compact
Framework which is built for embedded devices. Obviously,
it is very important to strike a good balance of memory us-
age and performance overhead since such devices have a
very limited amount of memory. In addition, the Compact
Framework is often used in Windows CE which has the
maximum virtual process space of only 32 MB. Thus, the
amount of code-cache has to be small enough to work in
this computing environment but yet big enough to provide
efficient compilation of methods.

2.3 The DNProfiler
Rotor comes packaged with a sample profiler called the
DNProfiler. The DNProfiler provides callbacks to the CLR
allowing a user to see what is going on without having
to hard-code debug statements into the source or develop
complicated hooks. The profiler provides callbacks for shut-
down and initialization, JIT events, garbage collection, thread-
ing, etc... All the user has to do is provide handler code
in the DNProfiler to process information during callback
events. Once the DNProfiler is coded and compiled, the
user has to activate it by turning profiling on and setting
the profiling mask to what they want to monitor.

To gather data, the DNProfiler was modified to handle the
JIT events. Specifically, the beginning and end of method
compilation was monitored along with program initializa-
tion and shutdown and pitch events. A high performance
counter was used to provide the most accurate time results
possible.

The DNProfiler by itself cannot provide enough informa-
tion to conduct our work. In order to track code-cache
usage, we also modify the JIT compiler in the section of
code that is responsible for allocating space for compiled
code, garbage collection of unused methods, and maintain-
ing the data structures representing the code-cache.



3. EMPIRICAL STUDY
As stated earlier, the behavior of compiled methods in
.NET framework has yet to be studied. In order to de-
sign an efficient pitching policy, a thorough understanding
of the behavior is needed. The current lack of this knowl-
edge has led us to the first research question.

RQ1: What are the basic behaviors of compiled

methods?

If a large number of methods is frequently used, then it may
not be suitable to pitch the code-cache frequently. Our
contribution is to profile the access behavior of compiled
method so that an efficient pitching decision can be made.
We conjecture that a significant performance gain or reduc-
tion in memory usage can be obtained by utilizing different
pitching policies. Thus, our second research question is:

RQ2: Can we improve the overall performance and

memory utilization by manipulating the code-

cache configuration?

In the default configuration of the SSCLI, the policy is to
perform pitching as the last resort. This may not be the
most optimal approach especially in the Compact Frame-
work where the amount of memory available on a system
may be limited. Our contribution is to identify a cache
size and suggest pitching policies that would result in small
cache footprint and minimal compilation overhead.

3.1 Variables and Measures
The JIT compiler relies on several variables to control cache
size and pitching. These variables are used to control the
compiler when to pitch, maximum and minimum cache size,
and cache growth characteristics. As will be described in
the next subsection, we utilize existing experimental ob-
jects written in C# to perform our experiment.

Throughout the experiment, we monitor the following vari-
ables. They provided useful insight into the operation of
the JIT compiler, specifically, its caching mechanism.

• Number of Pitch Events
When the compiler removes compiled code from the
cache it is called a pitch event. Pitching will preserve
methods that are currently in use, but will remove
the rest.

• Number of Recompilations
After a method has been pitched, each time it has
to be complied again is called a recompilation. A
method could be pitched and recompiled multiple times.

• Number of Different Methods
This is the number of unique methods compiled. The
number of unique methods does not include recom-
pilations and does not consider whether the method
has been pitched or not.

• Committed Code-Cache Size
The amount of heap space requested from the system
to store code is called the committed code-cache size.
The compiler asks for heap in increments of 8k.

• Code-Cache Usage
Code-Cache usage is the actual amount of memory
used to store compiled methods at a given time.

To address RQ1, we monitor the basic behavior of compiled
methods. Our goal is to derive at two important perfor-
mance metrics based on the results of variables above:

1. compilation frequency—we monitor how often meth-
ods are compiled and recompiled.

2. concentration of compiled methods—we monitor which
part in the execution methods are compiled the most.

We also observe the average size of compiled method and
compared them to the sizes of typical objects. In order
to do our experiments, we need to create an environment
where the amount of memory is similar to a typical Java
embedded device. To do so, we set the initial code-cache
size to 256KB. However, we would allow the SSCLI to en-
large the code-cache as necessary.

To address RQ2, we go a step further and prevent the SS-
CLI from enlarging the code-cache. The goal of our experi-
ment is to observe the behavior of compiled methods under
hard-limit and explore different code-cache configurations
to improve the overall performance. We also compare the
execution time among different configurations that result
in different number of pitch events.

3.2 Experimental Objects
To address our research questions, we need a set of pro-
grams that compiled a large number of methods. In addi-
tion, we must be able to manipulate the way these programs
are operated. As of now, there are very few benchmark pro-
grams available for the .NET platform. We have gathered
3 different programs that compiled a reasonable amount
of methods (over 1000). We also want to observe how the
code-cache would perform during the execution of smaller
applications. Therefore, we also experiment with using the
classic HelloWorld and Adaptive Huffman Compression to
get some insights on how many methods are needed to exe-
cute such as simple programs. To our surprise, HelloWorld
still requires over 300 compiled methods. This section de-
scribes the experimental objects:

• LCSC
This benchmark is based on the front end of a C#
compiler. The program parses a given C# input file
with a generalized LR algorithm. The benchmark is
available from Microsoft’s research web site [8], along
with the inputs that were used in performing the anal-
ysis.

• AHC
This program uses an adaptive Huffman compression
algorithm to process files. For this program there
were three separate inputs for use as test cases. This
benchmark is also available from Microsoft’s research
web site [8].

• Hello World
This is the classic ”Hello World” program written in
C#. It simply prints ”Hello World” to the console
and exits. Using such a simple program provided in-
sight into how many methods were needed just to
start and stop program execution. The specific file
used is available in the sscli/samples/hello directory.

• CodeToHTML
CodeToHTML is an example program found in the ss-
cli/samples/utilities/codetohtml directory. This pro-
gram parses a given C# or Jscript file and converts



Application Minimum (bytes) Maximum (bytes) Average (bytes) Standard Deviation Number of Methods
LCSC 52 27024 1044.93 2587.04 1351
AHC 52 6320 317.04 474.21 514

Hello World 52 6320 299.95 472.37 327
CLisp 52 44008 425.66 1424.96 1168

CodeToHTML 52 44008 460.67 1543.39 1665

Table 1: Basic characteristic of the compiled methods in our benchmarks

% of space needed in the code-cache
Application 15% 30% 45% 60% 75%

LCSC 0.65% 1.08% 1.41% 1.77% 2.16%
AHC 0.03% 0.05% 0.07% 99.95% 99.96%

Hello World 19.81% 35.54% 49.28% 55.03% 79.38%
CLisp 6.27% 11.58% 16.66% 40.12% 94.85%

CodeToHTML 0.08% 0.18% 0.24% 0.28% 0.33%

Table 2: Code-cache usage based on percentage of execution

it to an HTML file. The generated HTML file dis-
plays formatted C# in a clearly organized manner.
The test cases used were the C# files from the LCSC
benchmark and are available for download from the
Microsoft web site.

• CLisp Compiler
This is a small compiler that converts a Lisp source
file to an executable. The compiler was used to com-
pile two sample source files, a Fibonacci series genera-
tor and a numerical sorting algorithm. This compiler
is found in the sscli/compilers/clisp directory.

4. RESULTS
In the following subsections, we present the results of our
experiments that answer two research questions proposed
in Section 3.

4.1 RQ1: Access Behavior
In this section, we discuss the basic behavior of these com-
piled methods. The issues that will be discussed in this
section include the number of compiled methods in each
application, the number of methods that are recompiled,
and the size of the compiled methods. Table 1 depicts the
size information of compiled methods in our benchmark
programs.
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Figure 1: Distribution of compiled methods based
on the number of compilations

It is worth noticing that typical objects in Object-Oriented
Languages such as Java and C# only have the average
object size of less than 100 bytes [4, 13]. However, the
average size of the compiled methods in each application
range from 300 bytes to 1000 bytes. It is also worth noting
that the smallest size for a compiled method is 52 bytes.
This is true across all applications. For the largest size,
a method can be as large as 44K bytes. Since the SSCLI
commits memory in increments of 8K bytes, five requests to
increment must be made just to hold the largest compiled
method in our applications. If no pitching is used, 1.5 MB
of memory is needed to stored the compiled methods in
LCSC (LCSC needs the largest amount of memory at 1.4
MB).

It is also worth noticing that even small applications such
as HelloWorld, a significant number of methods is still
needed to complete the execution (i.e. 327 methods in
this case). However, we also find that complex applica-
tions such as compilers or HTML generator only require
about 1500 methods. We suspect that both compilers and
HTML generator perform repetitive routines, many of the
methods can be reused over the length of execution.

In our experiment, we first study the code-cache usage of
every application. We set the cache size to be large enough
so that pitching does not occur. With the proposed set
of benchmarks, the size is set to 2 MB. We then monitor
the percentage of execution and the percentage of the con-
sumption of the code-cache. For example, LCSC requires
1.4 MB of space to store all compiled methods. When the
program consumes 15% of all the needed cache space or
212 KB, we observe the percentage of execution. In this
case, the program has only completed 0.65% of the total
execution time (see Table 2). It is worth noting that in
three out of five applications, about 50% of all the space
needed for the code-cache are consumed with in the first
few percents of execution.

We also monitor the distribution of methods based on the
number of compilations. We set the code-cache size to
256KB to emulate embedded devices environment and in-
duce some pitch events. We find that in two applica-
tions AHC and HelloWorld, all methods are compiled only
once. However, in larger applications, such as compilers



and HTML converter, about 40% of methods are compiled
multiple times. Notice that CLisp and CodeToHTML re-
quire at most 3 and 4 compilations, respectively. How-
ever, LCSC requires methods to be compiled as many as
8 times. As stated earlier, most of these applications ex-
ecute repetitive tasks. Thus, many compiled methods are
reused. If pitch events are forced to occur more often, these
programs may need to have methods recompiled more fre-
quently. Figure 1 illustrates our findings.
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Figure 2: Distribution of recompiled methods over
the execution time

In terms of access behavior, we find that in all applica-
tions, methods are heavily accessed within the first 6% of
execution time. Then they are accessed moderately from
6% to about 30% of execution time. Afterward, they are
infrequently accessed. To investigate the number of recom-
piled methods, we set the code-cache size to 256KB to force
pitching. We find that about 70% of recompilation occur
during the first 6% of execution time (depicted in Figure
2) in all benchmark programs that perform recompilation
(excluding AHC and HelloWorld). The remaining 30% of
compilation occur during the remaining 94% of execution
time. Thus, many of these methods are short-lived but
during their lifetimes seem to have many accesses. This
is similar to typical objects where the majority are short-
lived [5, 12]. This behavior may provide an opportunity
for optimization by dynamically adjusting the heap size as
needed. For example, the heap size can initially be set to
be larger and then reduced after the first 6% of execution.
We are currently experimenting with this approach and will
report the result in the subsequent publication.

In summary, we find that compiled methods have the fol-
lowing behavior:

• The average size of a method is much larger than the
average size of a typical object.

• Even the simplest applications still require at least
300 methods to execute.

• In larger programs, a large number of methods is
reused. This conclusion is based on the fact that large
programs recompile a large amount of methods when
the cache size is small and pitching occurs frequently.

• The reuse often occurs toward the beginning of the
program execution.

4.2 RQ2: Optimizing Code-Cache Configu-
ration and Pitching Policy

In this section, we will apply different pitching policies to
LCSC and monitor the differences in the runtime behavior.
We choose LCSC because it accesses a large number of
methods and requires the largest number of pitch events.
In the SSCLI, there are two ways to set the size of the code-
cache. The first method (shall be referred to as Approach
1 ) is to set the initial code-cache to a certain size (e.g.
256KB). This however, is not the highest possible value.
When the amount of compiled methods reach 256KB for
the first time, the system will pitch all methods that are
not in scope but it will also consider whether to increase
the cache size. Thus, if the cache size is doubled, the next
pitch event will occur when the accumulation of methods
in the code-cache approaches 512KB. Figure 3 depicts the
pitch events using Approach 1. The initial code-cache is
set to 256KB.
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Figure 3: Monitoring pitch events using Approach
1
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Figure 4: Ratios between new methods and recom-
piled methods based on pitch events

Figure 3 illustrates the basic behavior of code-cache expan-
sion in Approach 1. The diamonds in the figure represent
the all the pitch events that occur in the system. In this ex-
ample, we have 6 pitch events throughout the execution of
LCSC. Table 3 depicts the number of pitch events in all ap-
plications with different target cache sizes (256KB, 512KB,
1MB, and 2MB). It is worth noting that the benefit gained
through this approach is in the reduction of the number of
pitch events during the initial execution period. For exam-
ple, by increasing the initial cache size from 256 KB to 512
KB, the number of pitch events decrease by two in LCSC.



These two events occur during the first five percent of the
execution.

Figure 4 depicts the number of methods that are recom-
piled by applying Approach 1 in which the cache size can
be increased as needed. Notice that there are more meth-
ods rejitted after the later pitch events (4 to 6). This is
corresponding to Table 2 as methods are compiled during
the early part of the execution. As we continue to pitch
late into the execution, the methods that were compiled
and have recently been pitched are still being accessed and
must be recompiled.

It is worth noting that the initial target size can greatly
affect the number of pitch events in the system. This is
because the first pitch event will take longer to occur with
larger cache size. As shown in Figure 2, a majority of re-
peated invocations occurs within the first 10% of execution.
Thus, a larger initial heap size be advantageous by facili-
tating more reuse at the beginning.

Figure 4 initially appears to be contradicting Figure 2 as
the amount of recompiled (reJITed) methods do not be-
come significant until the fourth pitch event. However, we
find that 4 out of 6 pitch events occur in the first 3% of
execution. The fifth event occurs around the 33rd percent
and the last event occur at the 80th percent. Thus, most
of the recompilation events occur during the initialization
of the system.

The second method (shall be referred to as Approach 2 )
is to set the initial code-cache size to be the limit. Notice
that the limit must be big enough to contain the initial
method working set that can initialize the application. If
the cache size is too small to contain all methods during
initialization, the program may crash. Table 4 provides the
information about the pitch events and the total execution
time in LCSC when the Approach 2 is applied. Again,
we monitor the number of pitch events with respect to the
different cache sizes.

Notice that excessive pitching (as in the cases of 256K and
512K cache size using Approach 2) can result in significant
runtime overheads (864 seconds with 6700 pitch events ver-
sus 66 seconds with no pitching). We also find that a small
amount of pitching does not significantly affect the overall
performance; however, it can lead to a very significant re-
duction in memory usage. For example, if the cache size
is set to 2MB, there is no pitching in the system. The ex-
ecution time of this scenario is about 67 seconds. On the
other hand, if we set the heap size to 1MB (50% saving in
memory usage), there are 4 - 5 pitch events (depending on
whether Approach 1 or 2 is used), but the execution times
only increase by about 1 second or 1.5%. Thus, in the mem-
ory constrained systems pitching can be used to reduce the
memory footprint without incurring a substantial amount
of overhead.

Figure 5 depicts the usage of code-cache as LCSC is exe-
cuted. The x-axis represents the percentage of execution
completion and the y-axis represents the amount of mem-
ory in the code-cache used by the program. It is worth
noting that with 256KB initial heap size using Approach
1, the size of the code-cache increases to 1024KB within the
first 3% of execution. However, it will take another 30% of
execution to accumulate the compiled methods that would
result in another pitching. In this situation, it may not be
necessary to increase the cache size from 768K to 1024K.
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Figure 5: Code cache usage (256KB)

In addition, after the pitch event at the 33rd percent of the
execution time, the next pitch events does not occur until
the 81st percent. One possible improvement to the pitch-
ing policy is to reduce the cache size after the programs
are fully initialized. This may result in a few more pitch
events but a significant reduction in memory usage can also
be obtained.
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Figure 6: Code cache usage (1024KB)

Figure 6 depicts the usage of code-cache for LCSC with
1024KB cache size applying approach 2. It is worth noting
that there are no pitch events at all until after 2.25% of
execution. The figure also shows that after the first pitch
event, there are only two more pitch events at the 33rd and
81st percents. As a reminder, this is similar to the number
of pitch events in Figure 5 after 4% of the program have
been executed. Thus, a larger cache size clearly reduces
the number of pitching activities during the initial state of
execution.

In summary, we conclude that the following policies can be
used to improve the pitching performance.

• Moderate pitching activities have very little effect on
the overall performance of the system. However, ex-
cessive pitching can incur a large amount of over-
heads. Thus, the policy should favor reducing mem-
ory usage over a moderate increase in pitching activ-
ities.

• Larger initial cache size can significantly reduce the
number of pitch events during the program initializa-
tion. Thus, the policy should allocate a large enough
cache at the beginning.

• Once stabilized, the system compiled fewer methods
which means that we can potentially reduce the cache
size at the expense of more pitching activities. How-
ever, the number of pitch events should be moderate



Applications 256k 512k 1024k 2048k 4096k 8192k 16384k 65536k
LCSC 6 4 3 0 0 0 0 0
AHC 0 0 0 0 0 0 0 0

CodeToHTML 3 2 0 0 0 0 0 0
Hello World 0 0 0 0 0 0 0 0

CLisp 2 1 0 0 0 0 0 0

Table 3: The number of pitch events with different code-cache sizes

Cache Approach 2 Approach 1
Size Execution Time (sec) Pitches Execution Time (sec) Pitches
256k 864.32 6774 68.81 6
512k 412.17 1470 68.64 5
1024k 69.45 5 69.44 3
2048k 66.88 0 68.38 0
4096k 66.78 0 68.16 0
8192k 67.52 0 68.38 0
16384 67.59 0 67.98 0
65536 67.58 0 68.19 0

Table 4: The number of pitch events and execution times with Approach 2

and not result in a substantial run-time overhead.
Thus, the policy should include reducing the cache
size after the initialization phase.

5. FUTURE WORK
Better benchmarks are needed that utilize more methods
that force the execution engine to pitch more frequently
especially for larger cache sizes. Ideally, pitching should
occur with heap sizes that are close to the default target
size. In addition, the benchmarks used in this experiment
do not demonstrate the diversity of applications the typ-
ical end user runs. More practical benchmarks are defi-
nitely needed to better simulate a real world system. On
the other hand, some of the chosen experimental objects
compile reasonable amounts of methods.

With that said, many of our results derive from experiment-
ing with these few benchmark programs. Thus, our con-
clusions or suggestions should not be viewed as generalized
ones. Instead, they should be viewed as potential solutions
to improve the performance of the code-pitching mecha-
nism in the SSCLI and .NET Compact Framework. Ob-
viously, experiments with more benchmark programs are
needed.

Future work will be focused on two primary goals. The
first goal is to develop better benchmarks in order to bet-
ter simulate real world uses of the SSCLI. These bench-
marks should focus on what a more average user would be
expected to run. New benchmarks should have network-
ing and other communication methods that are inherent to
their proper execution.

The second major goal is to develop a better code pitching
mechanism that selectively removes code from the cache,
as opposed to the all or nothing approach taken in the
current Rotor implementation. This improved collection
mechanism will likely correlate method usage and size to
enable the pitching mechanism to make a better decision
as to its usefulness in the future. In addition, the current
Rotor implementation does not decrease the size once the

code-cache has been expanded. We plan to investigate the
performance gain of decreasing the cache size after the ini-
tial phase of execution.

6. RELATED WORK
In [2], multi-level recompilation technique was introduced
as part of the Jalap̃eno Virtual Machine. The basic idea
is to use non-optimized compiler to compile a method the
first time it is called. During the execution, the virtual ma-
chine would keep track of all the ”hot” methods (frequently
accesses) and recompile them with higher optimization lev-
els.

Currently, the code pitching mechanism in .NET compact
framework as well as the SSCLI discards all compiled meth-
ods that are not in scope. The code-cache itself is sepa-
rately compartmentalized from the main heap memory re-
gion. This is different than work conducted by Zhang [16,
15]. In their work, the IBM’s Research Virtual Machine
(RVM) [1] was modified to incorporate code pitching. Un-
like the .NET CF and the SSCLI, the RVM intermixed
objects with compiled methods and therefore, the regu-
lar garbage collector is used to unload compiled methods.
Their framework attempted to adaptively balance the com-
pilation overhead and memory usage in the environment
where objects and compiled code are stored together. Their
main strategy is to identify what to unload and when to un-
load compiled methods. They reported that their strategy
can reduce the code size by 43% without incurring sub-
stantial overhead in memory unconstrained system. If the
memory is constrained, they can reduce the code size by as
much as 61%. They also claimed that a significant reduc-
tion in execution time (22%) can be obtained due to less
time spent in garbage collection.

It is worth noticing that they reported in their earlier work
that native IA32 code tends to be 6 to 8 times larger than
the bytecode written in Java. They also reported that on
average 61% of compiled methods are no longer accessed
after the first 10% of execution [16].



7. CONCLUSIONS
We have performed experiments to demonstrate the effects
of code-pitching on the overall performance of .NET ap-
plications. We find that the compiled methods have the
following properties. First, they are much larger than typ-
ical objects with averages ranging from 300 bytes to 1000
bytes. Second, a large number of methods are repeatedly
accessed. Third, these accesses often occur within the first
6% of execution time. Fourth, methods are compiled pro-
lifically. Even the simplest programs such as HelloWorld
still require as many as 300 methods to execute.

Based on the above finding, we conduct multiple experi-
ments using different code-cache configurations. First, we
set the initial cache size to different values ranging from
256KB to 64MB. We allow the system to expand the cache
as needed. By setting a larger initial cache size (e.g. 512KB
versus 256KB), we can reduce the number of pitch events by
33% (from 6 events to 4 events). Having a large initial cache
size can be advantageous since most of the method reuse oc-
cur within the first few percents of execution. Larger cache
size may defer pitching and promote more reuse. Second,
we also find that excessive pitching can cause significant
overhead. However, a moderate amount of pitching barely
incur overhead. In our experiment we find that when the
cache size is set at 2MB, no pitching occur. However, if
we reduce the cache size by half, 4 to 5 pitch events would
occur but the overall execution time only increase by 1.5%.
Thus, we conclude that a well designed pitching policy can
greatly reduce the amount of code-cache footprint without
incurring substantial overheads. In addition, a policy to
reduce the code-cache size after the initial state can also
be employed to further reduce the code-cache footprint.
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